Решение краевых многомерных задач шредингеровского типа методом Канторовича

О. Чулуунбаатар¹, А.А. Гусев¹, С.И. Виницкий²

¹Лаборатория информационных технологий, ОИЯИ; ²Лаборатория теоретической физики, ОИЯИ

Схема решения краевых задач методом Канторовича (МК)

В ряде случаев малочастичные квантово-механические задачи сводятся к решению многомерного стационарного уравнения Шредингера для волновой функции $\Psi(r, \Omega)$:

$$H(r,\Omega)\Psi(r,\Omega) = E\Psi(r,\Omega), \qquad (1)$$
$$H(r,\Omega) = -\frac{1}{f_1(r)}\frac{\partial}{\partial r}f_2(r)\frac{\partial}{\partial r}$$
$$+\frac{1}{f_3(r)}\left(-\hat{\Lambda}_{\Omega}^2 + U(r,\Omega)\right).$$

Здесь $\hat{\Lambda}^2_{\Omega}$ – самосопряженный дифференциальный оператор эллиптического типа с частными производными в конечной области $\hat{X} \subset \mathbf{R}^{d-1}$, $\Omega = \{\Omega_j\}_{j=1}^{d-1} \in \hat{X}$ – набор независимых переменных, $r \in (r_1, r_2) \in B \subset \mathbf{R}^1$ – независимая переменная, $X = B \otimes \hat{X} \subset \mathbf{R}^d$ – конечная область координатного пространства \mathbf{R}^d ; E – спектральный параметр, соответствующий энергии квантовой системы. Предполагается, что функции $f_1(r) > 0, f_2(r) > 0, f_3(r) > 0, \partial_r f_2(r), U(r, \Omega)$ и $\partial_r U(r, \Omega)$ – непрерывны и ограничены при всех $(r, \Omega) \in X$. Предполагается также, что самосопряженный оператор $L(\Omega; r) = -\hat{\Lambda}^2_{\Omega} + U(r, \Omega)$ имеет только дискретный вещественный спектр $\boldsymbol{\varepsilon}(r)$.

Решение $\Psi(r, \Omega) \in \mathbf{L}_2(X)$ уравнения (1) подчиняется краевым условиям третьего рода:

$$\mu_l \frac{\partial \Psi(r_l, \Omega)}{\partial r} - \lambda_l \Psi(r, \Omega) = 0, \ \Omega \in \partial \hat{X} \cup \hat{X}, \ l = 1, 2;$$
$$a \frac{\partial \Psi(r, \Omega)}{\partial \mathbf{n}} - b(r) \Psi(r, \Omega) = 0, \ \Omega \in \partial \hat{X}, \ r \in [r_1, r_2](2)$$

где μ_1 , λ_1 , μ_2 , a – вещественные константы; $\lambda_2 \equiv \lambda_2(r_2)$ – вещественная функция, зависящая от r_2 ; $\mu_l^2 + \lambda_l^2 \neq 0$; функции b(r), $\partial_r b(r)$ – непрерывны и ограничены; **п** – единичный вектор нормали к границе $\partial \hat{X}$ области \hat{X} .

В МК решение $\Psi(r, \Omega)$ ищется в виде разложения по однопараметрическому набору базисных функций $\{\psi_j(\Omega; r)\}_{j=1}^{j_{max}} \in \mathcal{F}_r \sim \mathbf{L}_2(\hat{X})$:

$$\Psi(r,\Omega) = \sum_{j=1}^{j_{\max}} \psi_j(\Omega;r)\chi_j(r).$$
(3)

В разложении (3) вектор-функция $\chi(r) = (\chi_1(r), \ldots, \chi_{j_{\max}}(r))^T$ – искомая. Базисные функ-

ции $\psi_j(\Omega; r)$ – решения параметрической задачи на собственные значения

$$L(\Omega; r)\psi_j(\Omega; r) = \varepsilon_j(r)\psi_j(\Omega; r), \qquad (4)$$

$$a\frac{\partial\psi_j(\Omega;r)}{\partial\mathbf{n}} - b(r)\psi_j(\Omega;r) = 0, \ \Omega \in \partial\hat{X}, \ r \in [r_1, r_2].$$

Они образуют ортонормированный базис по набору переменных $\Omega \in \hat{X}$ для каждого значения $r \in (r_1, r_2) \in B$:

$$\int_{\hat{X}} \psi_j(\Omega; r) \psi_j(\Omega; r) d\Omega = 1.$$
(5)

Здесь $\varepsilon_1(r) < \cdots < \varepsilon_{j_{\max}}(r) < \cdots \in \varepsilon(r)$ – искомый набор вещественных собственных значений, расположенных в порядке возрастания.

В результате проецирования (3)–(5) задача (1), (2) сводится к задаче на связанные состояния (относительно искомых $E, \chi(r)$) или к многоканальной задаче рассеяния (относительно набора искомых $\{\lambda_{2,i_o}\}_{i_o=1}^{N_o}, \{\chi_{i_o}(r)\}_{i_o=1}^{N_o}$ при фиксированном значении E) для системы из j_{max} обыкновенных дифференциальных уравнений (ОДУ)

$$\mathbf{H}(r)\boldsymbol{\chi}(r) = E\boldsymbol{\chi}(r), \qquad (6)$$
$$\mu_l \left(\mathbf{I}\frac{d}{l} - \mathbf{Q}(r)\right)\boldsymbol{\chi}(r) - \lambda_l \boldsymbol{\chi}(r) = 0, \ r = r_l, \ (7)$$

$$dr$$
 (dr (r)) (странование) (странование)

где \mathbf{I} – единичная матрица, $\mathbf{H}(r)$ – самосопряженный матричный оператор:

$$\mathbf{H}(r) = -\frac{1}{f_1(r)} \mathbf{I} \frac{d}{dr} f_2(r) \frac{d}{dr} + \mathbf{V}(r) + \frac{f_2(r)}{f_1(r)} \mathbf{Q}(r) \frac{d}{dr} + \frac{1}{f_1(r)} \frac{d}{dr} \frac{f_2(r) \mathbf{Q}(r)}{dr}.(8)$$

Собственная функция $\chi(r)$ задачи на связанные состояния (6)–(8) нормирована:

$$\|\boldsymbol{\chi}(r)\|_{0} = 1, \quad \|\boldsymbol{\chi}(r)\|_{0}^{2} = \int_{r_{1}}^{r_{2}} f_{1}(r)\boldsymbol{\chi}(r)^{T}\boldsymbol{\chi}(r)dr.$$
 (9)

Для многоканальной задачи рассеяния (6)–(8) число открытых каналов $N_o = \max j \leq j_{\max}$ определяется условием $E \geq \lim_{r_2 \to \infty} V_{jj}(r_2)$, если $\lim_{r_2 \to \infty} f_2(r_2)/f_1(r_2) = \text{const}$, а нормировка решения $\Phi(r) = \{\chi_{i_o}(r)\}_{i_o=1}^{N_o} - \text{условием}$:

$$\mathbf{\Phi}(r_2) = \mathbf{\Phi}_{\rm reg}(r_2) + \mathbf{\Phi}_{\rm irr}(r_2)\mathbf{K},\tag{10}$$

где **К** – искомая матрица реакции размерностью $N_o \times N_o$, а $\Phi_{\rm reg}(r)$ и $\Phi_{\rm irr}(r)$ – асимптотики регулярных и нерегулярных решений уравнения (6).

В системе (8) переменные элементы матриц $\mathbf{V}(r)$ и $\mathbf{Q}(r)$ размерностью $j_{\max} \times j_{\max}$ определяются формулами

$$V_{ij}(r) = V_{ji}(r) = \frac{\varepsilon_i(r) + \varepsilon_j(r)}{2f_3(r)} \delta_{ij} + \frac{f_2(r)}{f_1(r)} W_{ij}(r),$$

$$W_{ij}(r) = W_{ji}(r) = \int_{\hat{X}} \frac{\partial \psi_i(\Omega; r)}{\partial r} \frac{\partial \psi_j(\Omega; r)}{\partial r} d\Omega, \quad (11)$$

$$Q_{ij}(r) = -Q_{ji}(r) = -\int_{\hat{X}} \psi_i(\Omega; r) \frac{\partial \psi_j(\Omega; r)}{\partial r} d\Omega.$$

Производная от собственной функции $\partial_r \psi_j(\Omega; r) \in \mathcal{F}_r \sim \mathbf{L}_2(\hat{X})$ – решение параметрической неоднородной краевой задачи, получаемой дифференцированием по параметру задачи (4), (5):

$$(L(\Omega; r) - \varepsilon_j(r)) \frac{\partial \psi_j(\Omega; r)}{\partial r} = \left(\frac{\partial \varepsilon_j(r)}{\partial r} - \frac{\partial L(\Omega; r)}{\partial r}\right) \psi_j(\Omega; r), \quad (12)$$
$$a \frac{\partial^2 \psi_j(\Omega; r)}{\partial r \partial \mathbf{n}} - b(r) \frac{\partial \psi_j(\Omega; r)}{\partial r} = \frac{\partial b(r)}{\partial r} \psi_j(\Omega; r), \ \Omega \in \partial \hat{X}, \ r \in [r_1, r_2],$$
$$\int_{\hat{X}} \psi_j(\Omega; r) \frac{\partial \psi_j(\Omega; r)}{\partial r} d\Omega = 0.$$

Реализация МК приводит к необходимости разработки эффективных вычислительных схем для решений следующих проблем:

Проблема 1. Вычисление конечного набора собственных значений и собственных функций параметрической краевой задачи (4), (5).

Проблема 2. Вычисление первой производной собственных функций по параметру из неоднородной краевой задачи (12).

Проблема 3. Вычисление элементов матриц $\mathbf{Q}(r)$ и $\mathbf{V}(r)$ по формулам (11).

Проблема 4. Решение задачи на связанные состояния для системы ОДУ (6)–(9).

Проблема 5. Решение многоканальной задачи рассеяния для системы ОДУ (6)–(8), (10).

Методы решения и комплексы программ

Разработаны эффективные вариационнопроекционные вычислительные схемы и экономичные алгоритмы для численного решения проблем 1–5 на основе теории **R**-матрицы, асимптотических методов и метода конечных элементов (МКЭ). Созданы проблемно-ориентированные комплексы программ КАNTBP [1, 2], ODPEVP [4] POTHMF [3].

Комплекс программ КАNTВР назначен для численного решения **проблем 4** и **5**. Построенная численная схема обеспечивает известные оценки следующих погрешностей численного решения на неравномерной сетке $\Omega_{r_{t}}^{p}[r_{1}, r_{2}]$:

$$|E_j - E_j^h| \le c_1 h^{2p}, \| \boldsymbol{\chi}_j(r) - \boldsymbol{\chi}_j^h \|_0 \le c_2 h^{p+1}, (13)$$

где E_j и $\chi_j(r) \in \mathcal{H}^2$ – искомые собственные значения и соответствующие собственные функции задачи на связанные состояния; E_j^h и $\chi_j^h \in \mathcal{H}^1$ – соответствующие численные решения; h– максимальный шаг конечноэлементной сетки $\Omega_{r_h}^p[r_1, r_2]$; p – порядок аппроксимации; а c_1 и c_2 – положительные константы, не зависящие от h и p. Подобные оценки верны также для численного решения многоканальной задачи рассеяния, где λ_j^h – соответствующие собственные функции.

Комплекс программ ODPEVP в рамках проблем 1–3 ориентирован для численного решения однопараметрической задачи Штурма– Лиувилля на конечном интервале $z \in \overline{\Omega}_z = (z_1, z_2)$:

$$\left(-\frac{1}{g_1(z)}\frac{d}{dz}g_2(z)\frac{d}{dz} + U(r,z)\right)\psi_j(z;r)$$
$$=\epsilon_j(r)\psi_j(z;r). \tag{14}$$

Здесь $r \in \Omega_r = [r_1, r_2]$ – вещественный параметр, $\epsilon_j(r)$ – собственные значения, зависящие от параметра r. Предполагается, что функции $g_1(z) > 0$, $g_2(z) > 0$, $d_z g_2(z)$, U(r, z) и $\partial_r U(r, z)$ – непрерывны и ограничены при всех $z \in \overline{\Omega}_z$ и $r \in \Omega_r$. Параметрические собственные функции $\psi_j(z;r)$ подчиняются краевым условиям третьего рода на концах интервала $z \in \overline{\Omega}_z$:

$$a_l g_2(z) \frac{d\psi_j(z;r)}{dz} + b_l(r)\psi_j(z;r) = 0,$$

$$z = z_l, \ l = 1, 2, \tag{15}$$

и удовлетворяют условию нормировки

$$\|\psi_j(z;r)\|_0 = 1, \quad \|v(z)\|_0^2 = \int_{z_1}^{z_2} g_1(z)v(z)^2 dz.$$
 (16)

Здесь $a_1 \geq 0, a_2 \geq 0$ – вещественные константы, функции $b_1(r) \leq 0, b_2(r) \geq 0, \partial_r b_1(r)$ и $\partial_r b_2(r)$ – непрерывны и ограничены при $r \in \Omega_r, a_l^2 + b_l^2(r) \neq 0.$

Представлен экономичный алгоритм вычисления с заданной точностью набора $j_{\rm max}$ собственных значений, собственных функций и их первых производных по параметру r и интегралов

$$W_{ij}(r) = \int_{z_1}^{z_2} g_1(z) \frac{\partial \psi_i(z;r)}{\partial r} \frac{\partial \psi_j(z;r)}{\partial r} dz, \quad (17)$$
$$Q_{ij}(r) = -\int_{z_1}^{z_2} g_1(z) \psi_i(z;r) \frac{\partial \psi_j(z;r)}{\partial r} dz.$$

В МКЭ для численного решения ϵ_j^h и ψ_j^h доказаны следующие оценки погрешностей:

$$\left|\epsilon_{j}(r) - \epsilon_{j}^{h}\right| \le c_{1}h^{2p}, \left\|\psi_{j}(z;r) - \psi_{j}^{h}\right\|_{0} \le c_{2}h^{p+1}, (18)$$

где $\epsilon_j(r)$ и $\psi_j(z;r) \in \mathcal{H}^2$ – точные решения; ϵ_j^h и $\psi_j^h \in \mathcal{H}^1$ – соответствующие численные решения; h – максимальный шаг конечноэлементной сетки $\Omega_{z_h}^p[z_{\min}, z_{\max}]$; p – порядок аппроксимации; c_1 и c_2 – положительные константы, не зависящие от h и p.

Доказано, что имеет место следующая оценка:

Теорема. При заданном значении параметра г погрешности аппроксимаций первой производной по параметру от собственных значений, собственных функций краевой задачи (14), (15), и интегралов (17) ограничены неравенствами:

$$\left| \frac{\partial \epsilon_j(r)}{\partial r} - \frac{\partial \epsilon_j^h}{\partial r} \right| \le c_3 h^{2p},$$

$$\left\| \frac{\partial \psi_j(z;r)}{\partial r} - \frac{\partial \psi_j^h}{\partial r} \right\|_0 \le c_4 h^{p+1},$$

$$\left| Q_{ij}(r) - Q_{ij}^h \right| \le c_5 h^{2p}, \left| W_{ij}(r) - W_{ij}^h \right| \le c_6 h^{2p},$$
(19)

где $\partial_r \epsilon_j(r)$ и $\partial_r \psi_j(z;r) \in \mathcal{H}^2$, $Q_{ij}(r)$ и $W_{ij}(r)$ – точные функции; $\partial_r \epsilon_j^h$ и $\partial_r \psi_j^h \in \mathcal{H}^1$, Q_{ij}^h и W_{ij}^h – соответствующие численные значения; c_3, c_4 , c_5 и c_6 – положительные константы, не зависящие от h и p.

Представленные выше комплексы программ КАNТВР и ODPEVP позволяют решать с заданной точностью краевую задачу для двумерного уравнения эллиптического типа в рамках МК с дискретизацией последовательности краевых задач МКЭ. Комплекс программ POTHMF предназначен для численного решения **проблем 1–3** для угловых сплюснутых сфероидальных функций.

Перспективы и применение

Комплексы программ KANTBP^{1 2}, POTHMF³ и ODPEVP⁴ с полным описанием и тестовыми примерами сданы в библиотеку программ журнала Computer Physics Communication. К этим

Рис. 1: Зависимость скорости лазерностимулированной рекомбинации на один антипротон по отношению к начальной энергии позитрона E(при Z = 1, m = 0): λ_{SRR} при $\gamma = 2.595 \times 10^{-5}$ ($H \approx 6$ Тл) (сплошная линия), λ_{RR} при $\gamma = 0$ (пунктирная линия)

Рис. 2: Коэффициенты прохождения $|\hat{\mathbf{T}}|^2$ и отражения $|\hat{\mathbf{R}}|^2$ при Z=1,~m=0 и $\gamma=1\times 10^{-1}$

программам с сентября 2007 г., с января 2008 г. и с июля 2009 г. по сентябрь 2009 г. было официально зарегистрировано 289, 131 и 36 обращений пользователей, соответственно.

Эффективность разработанных методов, алгоритмов и созданных комплексов программ подтверждена результатами численного анализа полученных теоретических оценок погрешности решений краевых задач и результатами моделирования следующих физических процессов в малочастичных квантовых системах:

(а) Проведено численное исследование модели резонансного механизма фотоионизации и лазерно-стимулированной рекомбинации атома водорода в однородном магнитном поле $\gamma = H/H_0$ (см. рис. 1). Впервые предсказаны эффекты резонансного прохождения и полного отражения разноименно заряженных частиц в однородном магнитном поле [5, 6] (см. рис. 2, 3).

(б) Выполнено численное исследование моде-

Рис. 3: Профили абсолютных значений волновых функций $|\Psi_{Em \rightarrow}^{(-)}|$ на *zx* плоскости при Z = 1, m = 0 и $\gamma = 1 \times 10^{-1}$. Энергия E = 0.05885 а.е. соответствует энергии резонансного прохождения (а), а E = 0.11692 а.е. – энергии полного отражения (б).

Рис. 4: Суммарный коэффициент усиления $K(E) = |\Psi(2E, r = 0, \gamma)|^2 / |\Psi(2E, r = 0, \gamma = 0)|^2$ (сплошная линия) и парциальные вклады (пунктирные линии) открытых каналов $i_o = 1 \div 10$ в зависимости от E при q = -Z = 6 и $\gamma = 1$ (в масштабированных единицах)

ли осевого каналирования одноименно заряженных частиц в эффективном осцилляторном потенциале кристалла с частотой γ . Выявлен немонотонный характер зависимости от энергии Eстолкновения коэффициента усиления скорости ядерной реакции K(E), обусловленный впервые предсказанными резонансными эффектами отражения и прохождения каналированных ионов [7, 8] (см. рис. 4, 5).

Рис. 5: Диагональные элементы амплитуд прохождения $|T|^2_{i_o i_o}$ и отражения $|R|^2_{i_o i_o}$, соответствующим первым девяти открытым каналам ($i_o = 1 \div 9$), в зависимости от энергии (2E) для q = -Z = 6 и $\gamma = 1$

Список литературы

- O. Chuluunbaatar, et al: KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun., 177 (2007) 649–675.
- [2] O. Chuluunbaatar, et al: KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupledchannel hyperspherical adiabatic approach. Comput. Phys. Commun., **179** (2008) 685–693.
- [3] O. Chuluunbaatar, et al: POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogenlike atom in a homogeneous magnetic field. Comput. Phys. Commun., 178 (2008) 301–330.
- [4] O. Chuluunbaatar, et al: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem. Comput. Phys. Commun., 180 (2009) 1358–1375.
- [5] O. Chuluunbaatar, et al: Adiabatic representation for a hydrogen atom photoionization in an uniform magnetic field. AΦ, 71 (2008) 871–878.
- [6] O. Chuluunbaatar, et al: Photoionization and recombination of a hydrogen atom in a magnetic field. Phys. Rev. A 77, (2008) 034702–1–4.
- [7] O. Chuluunbaatar, et al: Channeling Problem for Charged Particles Produced by Confining Environment. AΦ, 72 (2009) 768–778.
- [8] С.И. Виницкий, и др: Эффекты резонансного прохождения и отражения каналированных ионов при наличии поперечного осцилляторного потенциала, Материалы Международной научной конференции "Моделирование нелинейных процессов и систем", под ред. Л.А. Уваровой, ГОУ ВПО МГ-ТУ "Станкин 2009", М., Янус-К, **12** (2009) 402– 422.